Detecting effects on migratory birds: new results and perspectives

Dr. Timothy Coppack, Institute of Applied Ecology, Broderstorf
Reinhold Hill, Avitec Research, Osterholz-Scharmbeck

Funded on the base of an act of the German Parliament
Migratory birds and wind turbines

The risk of collision

Barriers to movement

Studying migratory birds and wind turbines: 3 Challenges

(1) Species diversity
Heligoland Island: 426 species

(2) Size and dimension
143 m

(3) Nocturnality
ca. 2/3 of all migrants

Blackburn TM & Gaston K (1994)
Two ways of how to collect data offshore

Ship-based surveys

lots of space, little time

StUK 3

Station-based observations

lots of time, little space

FINO
Dedicated Bird Radar “BirdScan” on FINO 1
Dedicated Bird Radar “BirdScan” on FINO 1

Fixed Pencil Beam Radar

Advantages

- Specific echo signatures of non-passerines, passerines, insects
- Defined detection volume (as compared to marine surveillance radar)
“BirdScan” on FINO 1
“BirdScan” on FINO 1
November 1 2010: mass migration with accumulation of birds inside wind farm

inside wind farm

outside wind farm
Visual automatic recording system “VARS”
November 1 2010: mass migration with accumulation of birds near turbine
First evidence for a “scarecrow effect”

[Sep 27 2010 – Dec 16 2010]
Conclusions and further demands

1. We need a deeper understanding of the relative contribution of phototactic vs displacement effects of running turbines to overall collision risk.

2. As more and more offshore wind farms are installed, we need to shift methodology away from sporadic ship-based surveys (currently implemented in StUK 3) to station-based long-term studies at representative wind farms.

3. At the same time, we need to reduce among-site variation in methods in order to generate comparable data over larger temporal and spatial scales (e.g., weather radar).
Offshore bird migration

Predisposition:

Genetic determination for times of migratory restlessness (species or population specific)

Weather:

Weather conditions affect diurnal and annual migration behaviour, as well as migratory routes.

Result:

There is enormous variability in daily and annual intensities and species composition of migrating birds - within and between years

Non-continuous studies therefore face special difficulties. Before-after-comparisons are hardly explicable in a causal way.
Methods of detection

Radar systems: vertical & horizontal
- Intensity, time of day, flight-height profiles, phenology
- (heading), species spectra

Acoustic systems: Microphone
- Species spectra (at night + limited), phenology
- Intensity, heading, flight-height profiles, (time of night)

Visual observation: Seawatch
- Species spectra (at day), phenology, intensity, time of day, heading, height
- Height profile > 200 m

IfAÖ
Coppack & Hill: Detecting effects on migratory birds: new results and perspectives
Results from FINO1

More than 50% of echoes within 200 m above sea surface.

\[n_{\text{corr}} = 343220.1 \]
Phototaxis: lights attract migrating birds at night during bad weather

Circling flights around the illuminated constructions at FINO1 and the nearby turbines were observed by radar, thermal imaging, and video. But the detection of collisions of small birds with an offshore wind turbine during bad weather is a very difficult task.
Since 2003 (FINO1):

- > 1,000 dead birds found
- 4 mass-collision events with 88-199 casualties
- Predominantly affected: Thrushes
- Risk of collision mainly during night
- The number of casualties blown away by the wind or eaten by gulls is unknown
Avoidance Behaviour

Directions of observation

- NW
- NE
- SW
- SE

Distances:
- 3 km
- 10 km

IfAÖ

Coppack & Hill: Detecting effects on migratory birds: new results and perspectives

RAVE
RESEARCH AT ALPHA VENTUS
Avoidance Behaviour

Avian diversity differs strongly depending on observational direction

(ANOVA, $F_{3,60} = 11.84; p < 0.001$)

Wind farm affected areas are clearly avoided by migrating birds

(wind farm affected areas = low shares of diversity
Wind farm un-affected areas = high shares of diversity)
Conclusions and Perspectives

• There are still many open questions which can only be answered if we collect more station-based long-term data with advanced methods.

• We need to find a compromise between avian and human safety: (a) fewer lights and lower light intensity or (b) new light qualities to minimized attraction to birds in order to prevent phototaxis and collisions of birds.

• The feasibility of an “early warning system” in order to shut down the turbines in nights of mass migration needs further evaluation.
Thank you for your attention and to all supporting partners!