Welcome

WIND. ASSURING CONFIDENCE
THROUGH COMPETENCE

Assessment of effects of adverse weather conditions on offshore projects

Gerrit Wolken-Möhlmann
Dr. Marcel Wiggert
Agenda & Goals

- Introduction to weather risks
- COAST concept
- Case study
- Summary and outlook

Goals:
- Introduction to a holistic approach to analyze Transport and Installation (T&I) strategies using long weather time series
- Case study for different locations and a downtime map
- Where to apply the analysis method and principles how to reduce your weather risks

Figure: Florian Meier
Weather Risks
Offshore Wind Projects

Example: Project Delays
- 2001 Middelgrunden
- 2004 Scroby Sands
- 2009 Horns Rev 2
- 2009 Alpha Ventus “Weather conditions delay construction work at sea”
- 2010 Robin Rigg
- 2011 Bard Offshore 1
- 2012 “London Array delay costs Dong millions”
- 2012 Greater Gabbard “where weather problems contributed to a $400m loss”
- 2012 “Bad weather causes delay to Sheringham Shore windfarm project”
- 2012 “DONG Fights Weather Condition During Anhold Wind Turbine Installation”
- 2013 Meerwind Ost
- 2014 Amrumbank West

Example: Positive Effects
- 2010 Thanet
- 2012 Alpha Ventus (energy yield)

Risk Optimization = Cost Reduction
Wind Energy Update’s - Market Survey 2015
Offshore Wind Construction and Installation

General comment of a participant:
“Purely financially speaking: weather risk management solutions to make budgets workable and stable”

(300+ participants)
Agenda & Goals

- Introduction to weather risks
- **COAST concept**
- Case study
- Summary and outlook

Goals:
- Introduction to a holistic approach to analyze Transport and Installation (T&I) strategies using long weather time series
- Case study for different locations and a downtime map
- Where to apply the analysis method and principles how to reduce your weather risks

Figure: Florian Meier
Offshore Wind Farm
Setting the Scene

ENVIRONMENTAL AND BOUNDARY CONDITIONS

VESSEL RESTRICTIONS

ENVIRONMENTAL CONDITIONS

RISKS

MARINE OPERATION

Project Area

OWF – Components

Wind Turbine
Substructure
Converter
Inner array cable

Harbor A

Harbor B

13.10.2015
Wind Farms and Local Weather Conditions

- Location:
 - E.g. Fraunhofer Virtual Reference Wind Farm

- Local weather conditions:
 - Waves (e.g.: significant waves height, peak period, …)
 - Wind (e.g.: speed, gusts, …)
 - Currents, Temperature, Visibility, Clouds, Daylight, …

- Weather Data: (Example)
 - HZG CoastDat v1
 (Helmholz Zentrum Geesthacht)
Individual Vessel Strategy and Project Schedule

Installation Strategy

Vessel concept

- \(H_S = 2.5 \text{m}; \ U = 15 \text{m/s} \)
- Costs: 250.000 €/d
- Expensiv, lower weather risk

Project Schedule

- **Project 12 WTs**
 - Anfang: Do 06.06.13
- Installation of pin pil:
 - port activities: Do 06.06.13
 - outbound trip: Do 06.06.13
- Drive 48 piles:
 - Fr 07.06.13
 - drive 4 piles: Fr 07.06.13
- Drive 4 piles:
 - Sa 08.06.13
 - drive 4 piles: Mo 10.06.13
 - drive 4 piles: Mi 12.06.13
 - drive 4 piles: Do 13.06.13
 - drive 4 piles: Fr 15.06.13
 - drive 4 piles: Sa 15.06.13
 - drive 4 piles: Mo 17.06.13
 - drive 4 piles: Di 18.06.13
 - drive 4 piles: Mi 20.06.13
 - drive 4 piles: Do 22.06.13
- Inbound trip:
 - Mi 26.06.13
- Installation of jacket:
 - Mi 26.06.13
- Port activities:
 - Mi 26.06.13
- Outbound trip:
 - Do 27.06.13
- Installation of 3 lkr Do 27.06.13
Information Profile

- Local weather conditions, e.g.
 - Significant wave heights
 - Wind speeds
 - Currents
 - Temperature
 - Visibility

- Required T&I processes and sequences
- Project overall project time schedule

- Design of the structure
- Location wind farm/ports
- Vessel and equipment concept
- Guideline requirements
- Contractual agreements
Information Profile

- Local weather conditions, e.g.
 - Significant wave heights
 - Wind speeds
 - Currents
 - Temperature
 - Visibility

- Required T&I processes and sequences
- Project overall project time schedule

- Design of the structure
- Location wind farm/ports
- Vessel and equipment concept
- Guideline requirements
- Contractual agreements

WEATHER PARAMETERS

LOCAL WEATHER CONDITIONS

MEASURED

HINDCAST

WEATHER TIME SERIES

T&I CONCEPT

PROJECT SCHEDULES

INSTALLATION STRATEGY

BOUNDARY CONDITIONS

MEASUREMENT
Information Profile

WEATHER PARAMETERS
- Local weather conditions, e.g.
 - Significant wave heights
 - Wind speeds
 - Currents
 - Temperature
 - Visibility

WEATHER TIME SERIES
MEASURED
HINDCAST

PROJECT SCHEDULES
- Required T&I processes and sequences
- Project overall project time schedule

INSTALLATION STRATEGY
- Design of the structure
- Location wind farm/ports
- Vessel and equipment concept
- Guideline requirements
- Contractual agreements

WEATHER CONDITIONS
RESTRICTIONS
GUIDELINES

PROJECT DURATION
Sensitivity and Scenario Analysis
ROBUST PROJECT SCHEDULES

COST AND RISK OPTIMIZATION

13.10.2015
COAST – Research Project
Comprehensive Offshore Analysis and Simulation Tool

Munich RE
HOCHTIEF SOLUTIONS AG
Fraunhofer IWES
Deutscher Wetterdienst
Wetter und Klima aus einer Hand
BUGSIER
WindMW

Supported by:
Federal Ministry for the Environment, Nature Conservation and Nuclear Safety
based on a decision of the Parliament of the Federal Republic of Germany

Source: shutterstock
WaTTS – Method
Weather Time Series Scheduling

- Consideration of:
 - Task sequence
 - Contingencies in guidelines
 - Different weather restrictions
 - Weather forecast error

- Calculation of project durations and their probabilities
- Calculation of installation cycles
Principle of Yearly Simulation

TIME SCALE

DURATION VS. START DATE

START DATE: E.G. 01.01.
COAST - Software
Agenda & Goals

- Introduction to weather risks
- COAST concept
- Case study
- Summary and outlook

Goals:
- Introduction to a holistic approach to analyze Transport and Installation (T&I) strategies using long weather time series
- Case study for different locations and a downtime map
- Where to apply the analysis method and principles how to reduce your weather risks
Fraunhofer IWES
Virtual Reference Wind Farms

Location:
- FINO1 (54.0°N 6.6°E)
- FINO3 (55.2°N 7.2°E)
- NSBIII (54.7°N 6.8°E)

Weather Data:
- Approx. Alpha Ventus
- HZG CoastDat v1
(Helmholz Zentrum Geesthacht)

Weather Parameters (used)
- Significant Wave Height (h_S)
- Wind speed (U)
Case Study: Installation Sequence

Repetitive Operational Sequence

<table>
<thead>
<tr>
<th>Vorgangsnr.</th>
<th>Vorgangsnr.</th>
<th>Anfang</th>
<th>Fertigstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Installation of 20 Foundations, cable works and WIG</td>
<td>Mi 01.07.15</td>
<td>Mo 03.07.17</td>
</tr>
<tr>
<td>2</td>
<td>Start of Project</td>
<td>Mi 01.07.15</td>
<td>Mi 01.07.15</td>
</tr>
<tr>
<td>3</td>
<td>Installation of Foundations</td>
<td>Mi 01.07.15</td>
<td>Mi 24.06.17</td>
</tr>
<tr>
<td>4</td>
<td>Loop 1: Foundation 01-10</td>
<td>Mi 01.07.15</td>
<td>Di 02.07.15</td>
</tr>
<tr>
<td>5</td>
<td>1. Load of at Baseport</td>
<td>Mi 01.07.15</td>
<td>Do 02.07.15</td>
</tr>
<tr>
<td>6</td>
<td>LoadOut of 3 sets at Port</td>
<td>Mi 01.07.15</td>
<td>Mi 01.07.15</td>
</tr>
<tr>
<td>7</td>
<td>Loading Foundation 01</td>
<td>Mi 01.07.15</td>
<td>Mi 01.07.15</td>
</tr>
<tr>
<td>8</td>
<td>Loading Foundation 02</td>
<td>Mi 01.07.15</td>
<td>Mi 01.07.15</td>
</tr>
<tr>
<td>9</td>
<td>Loading Foundation 03</td>
<td>Mi 01.07.15</td>
<td>Mi 01.07.15</td>
</tr>
<tr>
<td>10</td>
<td>Loading 9 piles</td>
<td>Mi 01.07.15</td>
<td>Mi 01.07.15</td>
</tr>
<tr>
<td>11</td>
<td>Loading Grout Materials</td>
<td>Mi 01.07.15</td>
<td>Mi 01.07.15</td>
</tr>
<tr>
<td>12</td>
<td>Seafastening</td>
<td>Mi 01.07.15</td>
<td>Mi 01.07.15</td>
</tr>
<tr>
<td>13</td>
<td>Jack DOWN</td>
<td>Mi 01.07.15</td>
<td>Mi 01.07.15</td>
</tr>
<tr>
<td>14</td>
<td>Port Departure Procedures</td>
<td>Mi 01.07.15</td>
<td>Mi 01.07.15</td>
</tr>
<tr>
<td>15</td>
<td>Travel to Offshore Site [100NM@10km±1h]</td>
<td>Mi 01.07.15</td>
<td>Do 02.07.15</td>
</tr>
<tr>
<td>16</td>
<td>Installation of Hot Tapping WIG on 1</td>
<td>Do 02.07.15</td>
<td>Di 01.04.17</td>
</tr>
<tr>
<td>17</td>
<td>Jack UP</td>
<td>Do 02.07.15</td>
<td>Do 02.07.15</td>
</tr>
<tr>
<td>18</td>
<td>Preloading</td>
<td>Do 02.07.15</td>
<td>Do 02.07.15</td>
</tr>
<tr>
<td>19</td>
<td>Preparation works</td>
<td>Do 02.07.15</td>
<td>Do 02.07.15</td>
</tr>
<tr>
<td>20</td>
<td>Foundation Installation to Seabed</td>
<td>Do 02.07.15</td>
<td>Mo 10.04.17</td>
</tr>
<tr>
<td>21</td>
<td>Lift Foundation onto seabed</td>
<td>Do 02.07.15</td>
<td>Mo 10.04.17</td>
</tr>
</tbody>
</table>

Input Data:
- 20 Jacket
- > 1.400 Activities
- No Guidelines considered
- Sign. Wave Height
- Wind Speed
- Start Date: Continues Simulation

© Fraunhofer 2015
Case Study:
Result FINO1 – Duration vs. Start Day
Case Study: Result FINO1 – Duration vs. Start Day
Case Study:
Result FINO1 – Distribution Comparison

- Primary weather risk
- Secondary weather risk
Case Study: Result FINO1 – Task vs. Duration
Location:
- FINO1 (54.0°N 6.6°E)
- FINO3 (55.2°N 7.2°E)
- NSBIII (54.7°N 6.8°E)

Weather Data:
- Approx. Alpha Ventus
- HZG CoastDat v1 (Helmholz Zentrum Geesthacht)

Weather Parameters (used):
- Significant Wave Height (h_S)
- Wind speed (U)
Case Study: Comparison of Different Locations

![Graph showing project duration vs. start date for different locations. The graph compares WaTSS results with P50, P05, and P95 confidence levels. The x-axis represents the start date ranging from January to January, and the y-axis represents project duration in days ranging from 80 to 240. The graph highlights the variability and distribution of project durations across different locations.]
Case Study:
Comparison of Different Locations

![Duration comparison graph]

- P50: FINO1
- P50: FINO3
- P50: NSBIII

Fraunhofer IWES
Case Study:
Comparison of Different Locations
Maps of Parameters

Mean wind speed

Capacity factor

Extreme sea states
Maps of Project Downtimes
Agenda & Goals

- Introduction to weather risks
- COAST concept
- Case study
- **Summary and outlook**

Goals:
- Introduction to a holistic approach to analyze Transport and Installation (T&I) strategies using long weather time series
- Case study for different locations and a downtime map
- Where to apply the analysis method and principles how to reduce your weather risks

Figure: Florian Meier
Further Fields of Application
Comparison of Installation Strategies

SZENARIO I
Classical Approach

- \(H_S = 1,5 \text{m}; \ U = 10 \text{m/s} \)
- Costs: 150.000 €/d
- Cost efficient, high weather risk

SZENARIO II
Specified Installation Vessel

- \(H_S = 2,5 \text{m}; \ U = 15 \text{m/s} \)
- Costs: 250.000 €/d
- Expensive, lower weather risk

SZENARIO III
Floating Structure (Feeder Strategy)

- \(H_S = 1,0 \text{m}, \ U = 10 \text{m/s} \)
- Costs: 100.000 €/d
- Cost efficient, high weather risk

www.scaldis.com
www.hochtief.de
www.wordpress.com
Fields of Application

Transport and Installation
- Analysis and optimization of project schedules, costs and risks; overall project plan
- Analysis and optimization of vessel and installation concepts; vessel designs
- Analysis and optimization of contractual payments, penalties and weather risk distribution
- Determination of remaining weather risks during installation
- Proof of project progress, delays or working times, claim management
- Support to determine insurance cover

Operation and Maintenance
- Analysis and optimization of planned and simple condition based maintenance
- Analysis and optimization of large component replacements
- Prediction of accessibility
- Analysis, comparison and optimization of (seasonal) accessibility strategies
- Analysis and optimization of weather risk distribution for vessel clubs

Civil Engineering
- All fields of application adapted for Civil Engineering topics

Fraunhofer IWES
Summary

- COAST Approach:
 - Assess the weather risk
 - Combating the weather risk by scenario investigations
 - Case studies for different locations
Acknowledgements

Fraunhofer IWES is funded by the:

Federal State of Bremen
- Senator für Umwelt, Bau, Verkehr und Europa
- Senator für Wirtschaft und Häfen
- Senatorin für Bildung und Wissenschaft
- Bremerhaven Gesellschaft für Investitions-Förderung und Stadtentwicklung GmbH

Federal State of Lower Saxony

Federal Republic of Germany

Federal Ministry for Economic Affairs and Energy (BMWi)
with support of the European Regional Development Fund (ERDF)
Our employees are all

innovation accelerators efficiency boosters competence linkers

class expander knowledge intensifiers planing secure
THANK YOU FOR YOUR ATTENTION

Any questions?
marcel.wiggert@iwes.fraunhofer.de
Background

DETAILED INFORMATION
Methods to Forecast Weather Dependent Activity Durations

1 WaTTS - Weather Time Series Scheduling
Methods to Forecast Weather Dependent Activity Durations

1 WaTTS - Weather Time Series Scheduling
COAST – Results

All results can be exported as .csv for further MS Excel use.
Schedule Risk Analysis

Example

- Project plan: including weather influence and project risks
Cost Pyramid
Significance of Early Decisions

Cost Pyramid by Lechner (for Civil Engineering Projects)

- PPH 1: Project preparation
- PPH 2: Planning
- PPH 3: Execution planning
- PPH 4: Execution
- PPH 5: End of project

Cost accuracy – cost pyramid – tolerance area:
- ± 20% ± 40%
- ± 15% ± 30%
- ± 5% ± 20%
- ± 3% ± 10%
- ± 0% ± 0%

Traditional prediction
Professional approaches

IDEA → PROJECT DEVELOPMENT → PLANNING & DESIGN → TRANSPORT & INSTALLATION → OPERATION & MAINTENANCE → DECOMMISSIONING/REPOWERING → END

Fraunhofer IWES
13.10.2015