

Four years of nacelle-based lidar measurements in alpha ventus – a review

I. Würth, F. Haizmann, J. Anger, D. Schlipf, M. Hofsäß/ S. Raach, T. Hagemann, P. W. Cheng Stuttgart Wind Energy, University of Stuttgart

Gefördert auf Grund eines Beschlusses des Deutschen Bundestages

Projektträger

Koordination

Motivation

AV7

AV4

Motivation

Nacelle based lidar measurements

- Wind field measurement over the whole swept rotor area
- Different
 measurements: inflow,
 wake, flow through the
 turbine
- Different applications possible (power curve, control, wake)

[Fig. DNV GL, SWE]

RESEARCH AT ALPHA VENTUS Eine Forschungsinitiative des Bundesumweltministeriums

Measurement Setup

Horizontal actuator

- Laser beam is diverted by a 2DOF mirror
- Arbitrary trajectories
- Very fast scanning of measurement points up to 6Hz

Where to measure - main trajectories

Staring mode (1D)

Circle (3D)

Liss2Grid (3D)

Overview of measurements

In total 1162 days of measurements

Overview of measurements

 $\sum_{u=1}^{5} \frac{1}{u}$

4

_

Four years of nacelle-based lidar measurements in alpha ventus – a review Offshore Wind R&D Conference 2015

[Fig. SWE]

Trajectory optimization: wake

14 m/s

13 m/s

12 m/s

11 m/s

10 m/s

9 m/s

-8 m/s

7 m/s

6 m/s

5 m/s

[Fig. SW

Four years of nacelle-based lidar measurements in alpha ventus – a review Offshore Wind R&D Conference 2015

Trajectory optimization: control

customized trajectory with model [Schlipf, ISARS2012]

- best correlation:
 - > circle 6 points
 - r = 0.25D
 - $\rightarrow x = 2D$

[Fig. SWE]

Trajectory optimization: flow through the turbine

Practical lessons learned

- Very extreme and harsh environmental conditions
 → humidity leakage is an issue
- Constant monitoring of lidar is necessary
 - → good remote access, webcam
- Maintenance is a challenge, difficult access
 - → can lead to low data availability

Storm front Katrin 10/2014

→ need for robust lidar!

Summary

- 1163 days of lidar data available
- Mostly inflow and wake measurements
- Different trajectories for different applications
- Lessons learned: need for a robust lidar!

How to get the data?

- Data is uploaded in the RAVE database
- Documentation is available

Thank you for your interest!

