2nd generation DC grid access for large scale offshore wind farms
Cost reduction is a must to make Offshore Wind a competitive renewable energy source: Reaching LCoE below 10 ct.€/kWh by 2020

Based on the SWT-6.0-154 turbine; Offshore project 1 GW, 50m water depth, 100 km from shore
For significant cost saving in the grid access part we need paradigm shifts!

New AC grid access attaches the electrical equipment to the turbine foundation

- Official launch at the EWEA Offshore conference 03/2015

New DC grid access uses distributed small DC platforms

- First presentation to the offshore wind industry at the EWEA Offshore conference 03/2015.
- Official launch 10/2015 at “Nationale Maritime Konferenz” in Bremerhaven
New Siemens AC Grid Access Solution (SGA-AC) uses an Offshore Transformer Module

The new SGA-AC consists of an OTM attached to a booster turbine

- Distributed transmission asset in incremental 250 MW blocks
- Compact and rugged design
- Electrical components optimized from our accumulated lifecycle experience
- Modular approach
- Installation with wind turbine foundation or independently
- Can be implemented with every wind turbine supplier
- Environmentally Friendly
- Low Maintenance
- Flexibility and choice for customers: Optimized conventional platform also available

✓ 40% Cost reduction and
✓ One third smaller in size and weight compared to a traditional substation
DC grid access in the German bight today

HelWin alpha, 576 MW

DolWin gamma, 900MW, in construction by Alstom, Picture from Overdick
We have learned our lessons from the German bight!

- We looked at the whole system from the very beginning (from blade to shore)
- We kept the offshore equipment as simple and robust as possible
- We kept the offshore platform sizes and weights in ranges good to handle
- We stuck to what developers and operators are used to from AC grid access in terms installation and maintenance
The new DC grid access concept: Siemens Grid Access using a Diode Rectifier Unit (SGA-DRU)

Current status
- Onshore HVDC converter station
- Large central DC platform
- OSS

New concept
- Onshore HVDC converter station
- Distributed small DC platforms

- First presented at EWEA conference in Copenhagen, March 10th.
- Official launch 10/2015 at “Nationale Maritime Konferenz in Bremerhaven”

<table>
<thead>
<tr>
<th>Metric</th>
<th>New concept</th>
<th>Current status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total topside volume:</td>
<td>-80%</td>
<td>-80%</td>
</tr>
<tr>
<td>Total topside weight:</td>
<td>-65%</td>
<td>-65%</td>
</tr>
<tr>
<td>Installation time:</td>
<td>-20%</td>
<td>-20%</td>
</tr>
<tr>
<td>Transmission losses:</td>
<td>-20%</td>
<td></td>
</tr>
<tr>
<td>Transmission capacity:</td>
<td>+30%</td>
<td></td>
</tr>
<tr>
<td>Costs:</td>
<td>-30%</td>
<td></td>
</tr>
</tbody>
</table>
The root for the large DC platform is the air insulated converter and air insulated DC switchgear

Current approach

Converter
- Bi-directional power flow
- But
 - Complex
 - Large
 - Air insulated

Rectifier
- Simple
- Robust
- Low losses
- Low maintenance costs
- Encapsulated
- But
 - One way power flow
 - AC voltage control by WTGs

New Grid Access solution
Major reductions in weight and volume can be achieved by encapsulating all HVDC equipment.

DC Compact Switchgear

Diode Rectifier Unit with flame retardant and biodegradable insulation
Simplified single line diagram of NGA 1200 MW
Size reduction enabled by the encapsulated rectifier

Current approach (900 MW)

Space required for converter, Xformers and reactors: 50,000 m³

New Solution (1,200 MW)

Space for the rectifier module: 3 x 2200 m³ = 6,600 m³
DC Compact Switchgear

Required volume compared to an air insulated approach

reduced by 90%
Diode Rectifier Unit (DRU)
The new core grid access component

- Nominal power: 200 MW
- Nominal voltage AC: 66 kV
- Nominal voltage DC: 106.7 kV
- Size fits for transport by road and ship
- Bio degradable and flame retardant ester insulation
The resulting reductions in weight (topside)

Current approach (900 MW) 26.000 t

1) AC platforms installed/under construction, 2) Current BOR3, 3) GA-New Solution

New Solution (1,200 MW) Ca. 9.000t
The new DC platform

- Two rectifier units
- AC Filter / Reactor
- Deck with switchgear
The new WTG control concept

Old vs. new WTG control concept

Old
Load flow is controlled by WTG phase angle

New
Load flow is controlled by WTG voltage magnitude
Simulated NGA System with HVDC+ Station (Distance 200 km to Onshore Grid Connection Point)

Location of switching operations referenced by σ,
Example: Energization of one out of the 18 wind turbine strings (with 12 WTGs)

1. Energization of string cable
2. WTGs TR energized WTGs in SVC mode
3. DRU unit energized and connected
4. First WTG operated in P prod. mode
5. Energ. of Filter, 11 WTG at P mode 20 % Pn
6. 11 WTGs ramped to nominal P
7. Umbilical Cable disconnected
8. Freq. operation point adjustment (without Umb.)

Fast ramp up of active power in connection with delayed umbilical cable disconnection => worst case scenario for system stability!
Benefits of the new DC grid access solution

- Encapsulated, rugged equipment
- Simple and robust power electronics
- Low flammable, biodegradable insulation liquid
- Easy transport and installation
- High reliability, minimal maintenance
- No offshore DC converter as single point of failure
- Shorter delivery times
- Stepwise offshore installation feasible
- Fast commissioning of WTG auxiliary power
- Up to 1200MW DC

→ Major reductions in CapEx and OpEx
For smaller power ratings AC is more beneficial.

For small and distant farms there is no cost-effective grid access technology existing.