Wind Energy
Vibration-based structural health monitoring
for tower and foundation of offshore wind turbines

Peter Kraemer

Offshore Wind R&D Conference 2015
October 13-15, 2015, Bremerhaven, Germany
Vibrations experts

Vibrations
Structural dynamics
Acoustics

Engineering services
Systems
Software

90+ Employees
900+ projects / year

for SME and industrial customers
in Europe + internationally

© Wölfel 2015. All rights reserved, also regarding any exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.
Projects / Systems – a selection: Foundation / Tower monitoring

- RWE Innogy – Nordsee Ost:
 - Measurement systems
 - Data analysis (online / offline) and decision making
 - Reports

- Iberdrola
 - Measurement systems
 - Data analysis (online / offline) and decision making
 - Reports

- WindMW
 - Data analysis

- EnBW
 - Measurement systems for Baltic 2
 - Data analysis for plant certification (Modal analysis: eigenfrequencies and modal damping)

- Nordex / Onshore:
 - Development of analysis software for calculation of tower bending moments and remaining lifetime by means of measured acceleration data
Purpose of the presentation

Preliminary results of the project UnderwaterINSPECT

- Test facilities: test hall and sand basin of TTH - Leibniz Universität Hannover (together with Fraunhofer IWES)
- Test rig: model of a plant with monopile foundation
- Sensors and hardware
- Purposes of the tests
- Preliminary results of data analysis
- Technical findings
- Further investigations
Experiments (test rig at TTH)

BD.10 shaker

2D-acceleration
2D-inclinometer
Strain gauges
Temperature
1D-acceleration

Level 9

Level 8

Level 7

Level 6

Level 5

Level 4

Level 3

Water

Sand

Scour

Level 2

Level 1

L = 6 m

l = 8 m

1.5 m

6.5 m

7.5 m

© Wölfel 2015. All rights reserved, also regarding any exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.
Measurement of following structural states:

- References (no changes of the structure)
- Soil degradation
- Loosened screws at the flange
- Additional masses
- Scouring
- Inclined structure

Scopes:

- Learning of unchanged state
- Detection of soil degradation
- Detection of loosened screws
- Detection of fouling
- Detection of scouring
- Detection of inclination

Excitation: Stochastic loads (assumed as unknown) by means of BD.10 shaker

Data analysis tools (only preliminary data-driven algorithms):

- Operational Modal Analysis (OMA)
- Stochastic Subspace Fault Detection (SSFD)
- Time series models (ARMA family)
- Statistical properties of the data
- Pattern recognition algorithms
Soil degradation

- Change of the state indicator (here based only on the changes of 1st eigenfrequency)
- Probable cause of change: soil degradation
- Excitation: Random within frequency range of 2-50 Hz; RMS of excitation: 350 N
- Measurement time / data set: 10 min; sample rate: 500 Hz
Changes of 1st eigenfrequency during the measurements; RMS of excitation: 250 N

Damage, mass and scouring detection (1144 data sets)

Inclination detection (523 data sets)
Loosened screws and scouring: Indicators based on OMA

- 4 loosened screws
- 6 loosened screws
- 2 loosened screws
- scour -30 cm
- scour -60 cm
- scour -80 cm

© Wölfel 2015. All rights reserved, also regarding any exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.
Loosened screws and scouring: Indicators based on SSFD

- 4 loosened screws
- 6 loosened screws
- 4 loosened screws
- 2 loosened screws

- +4 kg
- +20 kg
- +30 kg

- -30 cm
- -60 cm
- -80 cm

mass +4 kg
mass +20 kg
mass +30 kg

scour -30 cm
scour -60 cm
scour -80 cm

© Wölfel 2015. All rights reserved, also regarding any exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.
Installation of hydraulic system → periodical eccentric loads

Mode participation: 1

Residual (°)

Measurement no.

Without sleeve

With sleeve

Inclination during loads from hydraulics

Remaining inclination

Inclination during loads from hydraulics

NS Level 4 at 2015.09.17

L1, L2, L3, L4

Remaining inclination

Z0094

RAVE 2015

PK, 2015/10/14, page 13

© Wölfel 2015. All rights reserved, also regarding any exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.
Structure inclination after eccentric loading by hydraulics

Measurements during shaker excitation → OMA

Loads from hydraulics → inclination
Conclusion and further work

• Strong changes of the soil during the measurements
• Loosened screws can be well detected
• The effects of structure inclination are covered by the effects of soil changes
• The effect of the scouring on the dynamical properties is very strong → could cover effects caused by damage, etc. → additional sensors only for scouring monitoring?
• In the future the data from UnderwaterINSPECT will be analyzed by means of further mathematical data-driven and model-based approaches
• Measurements for the purposes of cut loads and remaining lifetime estimation will be used for the development of appropriate approaches
• Effects of grout damage will be examined during the QS-M Grout project
• Further environmental and operational effects on the plant dynamics observed in situ are considered in our monitoring algorithms
The authors are grateful to the German Ministry of Economics for the financial support of UnderwaterINSPECT project (grant no. FKZ 03SX345A)

Thank you for your attention!

Vibration Experts

Wölfel Beratende Ingenieure GmbH + Co. KG
Max-Planck-Str.15
97204 Höchberg
Germany

Tel.: +49 931 49708-600
Fax: +49 931 49708-650
E-Mail: wbi@woelfel.de
www.woelfel.de

Dr.-Ing. Peter Kraemer
Tel.: +49 931 49708-147
Fax: +49 931 49708-650
E-Mail: kraemer@woelfel.de