IMPROVING THE MONITORING OF OFFSHORE WIND POWER PLANTS BY INTEGRATING CONTEXTUAL INFORMATION FROM LIFECYCLE RECORDS

Johannes Schmidt, Steffen Dienst, Jonas Beseler
AGENDA

– Motivation

– Data Analysis Approaches
 1. SCADA Client
 2. Intelligent Data Monitor
 3. Integrated Digital Life Cycle Record

– Conclusion
MOTIVATION

- **Machine learning** in the wind industry with promising results

- Mostly **focussing on SCADA data** (exclusively)

- Open challenges in practice
 - High quality annotated data sets needed
 - False alarm rates
 - Distributed context information leading to high efforts for operators
QUESTION OF INTEREST

- How can we increase the practical impact of machine learning algorithms for plant monitoring and operation in practice?

- Working packages
 - Providing knowledge context to algorithms
 - Providing knowledge context to users
 - User experience
DATA ANALYSIS APPROACHES

SCADA CLIENT

SCADA

Data

Operator

Trading

DMS
ERP
WFMS
...
Weather
Forecast
Context

Icons: FontAwesome; Source: own figure
DATA ANALYSIS APPROACHES

INTELLIGENT DATA MONITOR

SCADA 1

Data Monitoring 2

Icons: FontAwesome; Source: own figure
DATA INTELLIGENT DATA MONITOR

FEATURES

- **High-performant and intelligent** data analysis and prediction

- **Interactive** dashboards

- **Notifications** linked to anomaly data

- **Real-time data** support
INTELLIGENT DATA MONITOR

CHALLENGES

- Not every change is caused by a defect
 - Hardware (sensor) upgrades lead to different measurements
 - Previously unseen or seasonal behaviour
 - Firmware or parameter updates lead to different turbine behaviour

- Notify only, if “not yet known”, ignore subsequent and in progress defects

- Prioritize the impact on current and future power production
DATA ANALYSIS APPROACHES

SYSTEM INTEGRATION

1. SCADA
2. Data Monitoring
3. DMS, ERP, WFMS, Weather Forecast, Context

Icons: FontAwesome; Source: own figure

DATA ANALYSIS APPROACHES

SYSTEM INTEGRATION

1. SCADA
2. Data Monitoring
3. DMS, ERP, WFMS, Weather Forecast, Context

Icons: FontAwesome; Source: own figure
SYSTEM INTEGRATION

- System integration enables

 - Automatic creation of monitoring rules

 - Improvements on SCADA messages and sensor anomaly interpretation

 - Predictions based on plant history for predictive maintenance
SYSTEM INTEGRATION

AUTOMATIC CREATION OF MONITORING RULES

- Component **structure** from ERP
 - Parameterise physical models
- **Component semantics of RDS-PP®**: e.g. different types of “container”
 = MDK30 CM011 “hydraulic oil tank” / can run empty
 = MDK30 CL011 “hydraulic oil drip pan” / can spill over
- **Component master data and specification**
 - eCl@ss 36-03-01-04 “tank (closed)”:
 - Property: 0173-1#02-BAA138#005 (nominal volume)
 - Format: float (number);
 - Unit: litre
SYSTEM INTEGRATION

CONTEXT INFORMATION FOR SCADA MESSAGES AND SENSOR ANOMALY INTERPRETATION

- Integrate WFMS or DMS

- Use *wiring diagrams* to reason about dependant sensors
 - Enable anomaly classification
 - Improve user experience

- Use maintenance or incident *reports*
 - Detect *component exchange* or *software updates*
 - List of “*known incidents*” to suppress notifications
DATA ANALYSIS APPROACHES

SYSTEM INTEGRATION

icons: FontAwesome; Source: own figure

1. SCADA
2. Data Monitoring
3. Lifecycle Record
4. Weather forecast

Context
LIFECYCLE RECORD

ACCORDING TO GERMAN STANDARD DIN 77005-1

- Contains for each object every related documented information throughout the whole lifecycle in chronological order
- Broad normative (international) basis

- Key properties
 - Different types of information including relationships
 - Strict reference to the object
 - Recording lifecycle and lifetime
 - Contextual extensions through views

Source: DIN 77005-1:2018-09
LIFECYCLE RECORD

REFERENCE FRAMEWORK

- Normative specifications (and more)
 - Information model
 - Adoption and extension according to individual needs

Source: own figure, see also DIN 77005-1:2018-09
LIFECYCLE RECORD AND DATA MONITORING

BENEFITS AND POTENTIALS

- **Single point of integration** providing inter-connected information
 - Complete incident work logs and changes including *related information*

- Enables
 - **Triggering** data monitor after structural changes to *update models*
 - Extraction and **learning** of *incident patterns* for prediction
 - **Similarity search** in plant histories (e.g. other turbines in the park)
 - Knowledge linkage for anomaly **classification**
CONCLUSION

- Different **maturity levels** of Data Analysis Approaches
- **Importance of contextual information** to
 - Automatically create and maintain monitoring rules
 - Interpret SCADA messages and sensor anomalies
 - Enable history based predictions
- Lifecycle record provides **common information model**

High quality lifecycle record as annotated dataset (e.g. for supervised learning) to empower machine learning in practice.
PROJECT GRANTS
MINDSET: MACHINE LEARNING FOR ANOMALY DETECTION IN STREAM DATA

- Sächsische Aufbaubank (SAB)
- Funding program: InnoTeam
- Project: Grant number: 100341518

Der Europäische Sozialfonds in Sachsen 2014 bis 2020
www.strukturfonds.sachsen.de
PROJECT GRANTS

SCADS DRESDEN/LEIPZIG

- Competence Center for Scalable Data Services and Solutions Dresden/Leipzig

Specialists from computer & domain sciences
Focal point for new research activities
Collaborative big data research
THANK YOU

Johannes Schmidt, M.Sc.
University of Leipzig
University Computing Centre

Hainstraße 11, 04109 Leipzig
T +49 341 97-33427

johannes.schmidt@uni-leipzig.de
schmidt@infai.org

Steffen Dienst, Dipl.-Inf.
xx
yy

Jonas Beseler, ZZ
AA
BB