OFFSHORE MONOPILE DECOMMISSIONING ON A SCALED BASIS

Nils Hinzmann, Philipp Stein, Dr. Jörg Gattermann
Technische Universität Braunschweig, Institut of Foundation Engineering and Soil Mechanics
EU5-Market development till 2040

- Decommissioning
- Repowering
- New development

[Prognos, 2011]
German North Sea development till 2040

[Prognos, 2011]
Development of OWF in Europe

- suitable areas
 - limited resources
- repowering
- decommissioning
Offshore Wind Substructures

- Monopile: 76.60%
- Schwergewicht: 8.97%
- Jacket: 5.55%
- Tripod/ Tripile: 5.10%
- Sonstige: 3.44%
- Floating: 0.32%

[Schaffarczyk, 2016]
[Achmus, 2009]
Current decommissioning solution – cutting

- external jet-cutting
 - dredging or excavating
 - external cutting
 - recovering of the pile

![Diagram showing steps of decommissioning](image)

1. Initial situation: turbine and TP removed
2. Sand dredging or excavating
3. External cutting
4. Pile removal and natural sand refill

- Mudline
monopile decommissioning preparation

1. [Sequence of actions]
2. [Sequence of actions]
3. [Sequence of actions]

[m]
monopile decommissioning preparation

1. [Diagram: Monopile structure with sections labeled 1, 2, and 3, and depth of 8.0 meters indicated.]
jet cutting

8.0 [m]

underwater camera
jet cutting nozzle
torch
monopile recovery

78.0 mm
Alternative decommissioning methods

I. Vibrator
 - Crane-uplift
 - Monopile
 - Shaft resistance $F_s = 0$
 - Bulking zone

II. Crane-uplift
 - Monopile
 - Shaft resistance F_s
 - Lance guidance
 - Jetting lance

III. Crane-uplift
 - Monopile
 - Shaft resistance F_s
 - Ballast ring

IV. Crane-uplift (or without)
 - Sealed pile head
 - High pressure pipe
 - Buoyancy force
 - Inflatable floating body

V. Crane-uplift
 - Sealed pile head
 - High pressure pipe
 - Hydraulic press
 - Lifting movement

VI. Crane-uplift
 - Monopile
 - Shaft resistance F_s
Vibratory Extraktion

- excitation of surrounding soil
- "free fall" of soil particles $\gamma \approx 0$
- skin friction drastically reduced
- extraction by lifting (pile + vibro)
Internal Dredging

- reducing the inner shaft resistance
- loose pile toe area
- bulking zone – hydraulic heave
- reducing outer shaft resistance
Internal Dredging

- reducing the inner shaft resistance
- loose pile toe area
- bulking zone – hydraulic heave
- reducing outer shaft resistance
Air-Pressure / over-pressure

- Buoyancy force
- Inflatable floating body
- Shaft resistance F_s
- Crane uplift
- Sealed pile head
- High pressure pipe
- Pressure

- Load cell
- Pressure sensor
- Air/water pressure
- Strain transducer
Air-Pressure / over-pressure

Crane-uplift
sealed pile head
air pressure

IGB-TUBS
Conclusion and Outlook

- steady increase of OWF worldwide
- decommissioning of the turbine and tower \rightarrow construction steps in reverse order
- jet-cutting is an approved method for offshore decommissioning:
 - low risk \rightarrow remote operating

- the need for sufficient decommissioning methods
- alternative methods need to be researched, developed and approved
Acknowledgements

research project 'DeCoMP'

large-scale model investigations for decommissioning of Monopiles
01.12.2018 – 30.11.2021
funding code: 0324316

pile driving equipment
vibro hammers provided by CAPE Holland BV

hydraulic/jetting lance equipment
Keller Grundbau GmbH
Thank you for your attention!