Route Optimization for Offshore Maintenance Tasks & Case Study

Darja Döhle
Table of Contents

- **Introduction**
 - problem definition – state of the art – target definition

- **Method**
 - case study

- **Results**
 - detailed example – conclusion
Problem Definition – Daily Route Optimization

- x-coordinate in km
- y-coordinate in km

- running turbines
- failed turbines

Darja Döhle - RAVE Conference - 15/11/2018

© Fraunhofer
Problem Definition – Daily Route Optimization

Darja Döhle - RAVE Conference - 15/11/2018
State of the Art

• **Routing Algorithms:** [1] [2]
 - high computation times

• **Simulation Models:** [3] [4]
 - no optimisation

• **Reality:**
 - experience based decisions
Target Definition

• **Routing optimization** in reasonable computation time

• Implementation in simulation model

• **Compare logistic strategies** in case study

• **Evaluate possible improvements** (short-term/long-term)
Method - Decomposition

Downtime losses are higher than CTV fuel costs

1. Optimize Schedule
 • Time-based availability
 • Energy losses

2. Optimize Routes
 • Travelled distance CTVs
 • Fuel costs
Case Study – 8 Logistic Strategies

- **Simulation period**: 20 years
- **Windfarm**: 80 turbines
- **CTVs**: 1-3 CTVs
- **Teams per CTV**: 1-4 Teams
Results – Time-Based Availability

days of operation

time-based availability in %
Improved Strategy – Seasonal Behavior

Darja Döhle - RAVE Conference - 15/11/2018
Detailed Evaluation – Winter Storm

work load of technicians in %
time-based availability in %
wind speed in m/s
years of operation

work load of technicians
wind speed on hub height
time-based availability

Darja Döhle - RAVE Conference - 15/11/2018

© Fraunhofer
Detailed Evaluation – Winter Storm

1.5 m
2.0 m
2.5 m

Time-based availability in %

Wind speed in m/s

Years of operation

Darja Döhle - RAVE Conference - 15/11/2018
Conclusions

• **Route optimization + simulation model**
 • decomposition, optimization rules, iterative calculations
 • computation times: 1h – 1day for 20 years simulation

• **Comparison of logistic strategies**
 • in terms of costs, time-based availability, energy output, work load…

• **Detailed analysis**
 • short-term strategy improvements
Thank You For Your Attention

Any questions?

darja.projekte@gmx.de
References

