Introduction - Input data - Remaining Useful Lifetime Model creation & validation Load accumulation Lifetime prediction - **Early Failure Detection Neural Network** - Conclusion ### Introduction Siemens PLM Software ### Wind farm maintenance is exceptionally challenging - Shorter lifetime than expected 20 years - Critical issue: gearbox ### Need for Predictability of the maintenance costs of each turbine - Remaining Useful Lifetime (RUL) of each gearbox in the wind farm - Early Failure Detection tool Maintanana and budget n - => Maintenance and budget planning #### Reliable historical data - Logged turbine controller data: SCADA (Supervisory Control and Data Acquisition) - To be able to calculate the gearbox RUL based on only SCADA data is a huge advantage! ### "Proof of Concept" collaboration project Utility/wind farm operator, Siemens PLM and Winergy ### **Dual Technical approach** **Neural Network (NN)** SCADA Monitoring data – 78 Wind Turbines 72 channels (wind speed, rpm, gearbox temp, faults, ...) Service history Data stored over **4 years** Data gathered and organized in **MindSphere** # SIEMENS Ingenuity for life **Turbine Model (SWT)** **Training Neural Network** Failure prediction and detection SCADA load cases Digital Twin: Model creation and correlation Remaining lifetime of gears and bearings for each wind turbine Introduction ### Input data - Remaining Useful Lifetime Model creation & validation Load accumulation Lifetime prediction - Early Failure Detection Neural Network - Conclusion #### **SCADA Database** | Description | |--------------------------------| | Angle of blade 1 | | Angle of blade 2 | | Anlge of blade 3 | | Generator speed | | Generator speed | | Nacelle Angle | | Operating state of the turbine | | Generated power | | Rotor speed | | Gearbox temperature bearing 1 | | Gearbox temperature | | Gearbox temperature bearing 2 | | Generator torque | | Wind speed | | Hydraulic brake pressure | | Ambient temperature | | Nacelle temperature | | Tower acceleration | | | ### **Repair history** SIEMENS Ingenuity for life **Wind Farm Operator** # Detailed gearbox information Winergy # Dedicated measurements on 1 turbine Siemens PLM Unrestricted Page 6 November 2nd, 2018 #### **SCADA** data ### 10 minute data points - Average - Minimum - Maximum - Standard deviation #### **Event & fault logging** - Braking - Pitching - Errors - • | SCADA name | Description | |------------------|--------------------------------| | AngleBlade1 | Angle of blade 1 | | AngleBlade2 | Angle of blade 2 | | AngleBlade3 | Anlge of blade 3 | | SpeedGenCCU | Generator speed | | SpeedGenPLC | Generator speed | | AngleNacelle | Nacelle Angle | | OperatingState | Operating state of the turbine | | PowerGen | Generated power | | SpeedRot | Rotor speed | | TempGbxBrg1 | Gearbox temperature bearing 1 | | TempGbx | Gearbox temperature | | TempGbxBrg2 | Gearbox temperature bearing 2 | | TorqueGen | Generator torque | | SpeedWind | Wind speed | | PrePressHssBrake | Hydraulic brake pressure | | TempAmbient | Ambient temperature | | TempNacelle | Nacelle temperature | | TowerAccMag | Tower acceleration | **Unrestricted © Siemens AG 2018** Page 7 November 2nd, 2018 Siemens PLM Software #### **SCADA - Creation of Wind time series** - Based upon SCADA 10-minute data samples: wind speed average, standard deviation minimum and maximum - Classification in wind classes as function of <u>wind speed</u> and <u>turbulence</u> **Unrestricted © Siemens AG 2018** Page 8 November 2nd, 2018 Siemens PLM Software #### **SCADA - Brake events** - 8 brake types: depends of blade pitching, mechanical braking & magnetic braking contributions - For all turbines during a 4 year period: Cumulative number of occurrences of each braking type Unrestricted © Siemens AG 2018 Page 9 November 2 - Introduction - Input data - Remaining Useful Lifetime **Model creation & validation** Load accumulation Lifetime prediction - Early Failure Detection Neural Network - Conclusion ### Wind turbine modelling LMS Samcef for Wind Turbine (SWT) combined kinematic-dynamic model of the entire turbine Detailed gearbox model information by Winergy Reverse Engineering of turbine by measurements in 1 turbine Driving force: Wind time series #### **Model includes** Blades and the Hub Main shaft Winergy gearbox Speed Coupling shaft Generator Bedplate Tower Pitch controller # SIEMENS Ingenuity for life ### Model validation measurements in 1 turbine - Aim: Identification of the global turbine dynamics (resonances) - Vibration response measurements by artificial excitation (hammer impact) - Updating of SWT model (without wind!) based upon measurements #### Simulated nacelle yawing mode Measured nacelle yawing mode # Measurement locations (120 DOF) - Hub - Main shaft - Gearbox - Generator - Bedplate - Tower Page 12 November 2nd, 2018 Siemens PLM ### Response validation measurements: Semi steady-state wind excitation **Measurement SWT Modelling** November 2nd, 2018 ### Response validation measurements: Transient operation Aim: Verification of gearbox loads during transients (e.g. stopping and starting, yawing, ...) ### **Operational response correlation** - Operational measurements on 1 turbine - Update of the parameters (e.g. control settings, damping, rotational dynamics, ...) to fit the response **Operational Validated model** #### **Torque at LSS during braking event** - Introduction - Input data - Remaining Useful Lifetime Model creation & validation ### Load accumulation Lifetime prediction - Early Failure Detection Neural Network - Conclusion ### Load accumulation ### Conversion of brake events to gearbox loads - Loads measurements in 1 turbine - Instrumented gearbox: RPM and torque - Application of several braking events - Most frequently observed in SCADA logging - Most severe (E-Stop) ### Load accumulation # SIEMENS Ingenuity for life ### Loads cascading: from SCADA to bearing & gear teeth forces # Clearly defined operating conditions Validated turbine model with detailed gearbox # Loads for all components for all operating conditions - BRAKE_4_timeseries.csv - BRAKE 8 timeseries.csv - LMS_Occurences.xlsx - LoadCase3_timeseries.csv - LoadCase4_timeseries.csv - LoadCase5_timeseries.csv - LoadCase6_timeseries.csv - LoadCase7_timeseries.csv - LoadCase8 timeseries.csv - LoadCase9_timeseries.csv - LoadCase10_timeseries.csv - LoadCase11 timeseries.csv - LoadCase12 timeseries.csv - LoadCase13_timeseries.csv - LoadCase14 timeseries.csv - LoadCase15 timeseries.csv - LoadCase16 timeseries.csv - _ - LoadCase17_timeseries.csv - LoadCase18_timeseries.csv - LoadCase19_timeseries.csv - LoadCase20_timeseries.csv **Unrestricted © Siemens AG 2018** Page 17 November 2nd, 2018 Siemens PLM Software - Introduction - Input data - Remaining Useful Lifetime Model creation & validation Load accumulation ### Lifetime prediction - Early Failure Detection Neural Network - Conclusion # Lifetime prediction # SIEMENS Ingenuity for life ### **Remaining Lifetime Process** # Lifetime prediction **Unrestricted © Siemens AG 2018** Siemens PLM Software November 2nd, 2018 Page 20 - Introduction - Input data - Remaining Useful Lifetime Model creation & validation Load accumulation Lifetime prediction - Early Failure Detection ### **Neural Network** Conclusion #### **Recurrent Neural Network** Machine Learning is a type of Artificial Intelligence that provides computers with the ability to learn without being explicitly programmed. Siemens PLM Software November 2nd, 2018 Page 22 # SIEMENS Ingenuity for life ### **Service history** Only a small amount of gearbox failures is observed - 6 turbines were repaired in the available data timeframe - Repairs are linked to gear and bearing damages (cracks) | Turbine | Date | What | Remark | |---------|------------|--------|--| | | 19/8/2015 | Notice | Broken tooth on the intermediate pinion found | | Α | 24/8/2015 | Repair | Intermediate speed shaft | | | 26/8/2015 | Repair | Intermediate assembly + three bearing replacement | | В | 1/4/2015 | Repair | Intermediate speed shaft | | | 13/4/2015 | Notice | Broken teeth on the intermediate gear found | | | 30/07/2015 | Notice | Gen allingment, all OK | | С | 1/5/2017 | Repair | Intermediate speed shaft | | | 3/19/2017 | Notice | Cracks in IMS gen side bearing + planetary gears damages | | D | 1/4/2015 | Repair | Intermediate speed shaft | | | 8/4/2015 | Notice | Broken tooth on the intermediate gear | | E | 4/14/2015 | Notice | Cracks in bearings generator side and spalling on the planetary bearings | | | 18/05/2015 | Repair | Intermediate speed shaft | | | 29/09/2017 | Notice | All OK | | F | 13/10/2014 | Repair | Intermediate speed shaft | ### SCADA signals representative for potential gearbox damage ### Available SCADA signals | SCADA name | Description | |------------------|--------------------------------| | AngleBlade1 | Angle of blade 1 | | AngleBlade2 | Angle of blade 2 | | AngleBlade3 | Anlge of blade 3 | | SpeedGenCCU | Generator speed | | SpeedGenPLC | Generator speed | | AngleNacelle | Nacelle Angle | | OperatingState | Operating state of the turbine | | PowerGen | Generated power | | SpeedRot | Rotor speed | | TempGbxBrg1 | Gearbox temperature bearing 1 | | TempGbx | Gearbox temperature | | TempGbxBrg2 | Gearbox temperature bearing 2 | | TorqueGen | Generator torque | | SpeedWind | Wind speed | | PrePressHssBrake | Hydraulic brake pressure | | TempAmbient | Ambient temperature | | TempNacelle | Nacelle temperature | | TowerAccMag | Tower acceleration | Typical (bearing) monitoring signals (e.g. vibration) are not available! Assumption: Gearbox temperatures are most likely to be influenced by gearbox bearing failures: - TempGbxBrg1 - TempGbx - TempGbxBrg2 ### **Gearbox temperature prediction** Page 25 **SIEMENS** 1. Create a Neural Network that can predict gearbox temperatures from inputs that are not influenced by failures - 2. Train the neural network with data when no failure is present - The networks learns how a healthy turbine reacts - 3. Feed the complete dataset to the network - Prediction of gearbox temperature is an indicator for failure - Accurate = Healthy state - Drifts and inaccuracies = Non-healthy state Accurate Temperature prediction Failure in cooling system would change temperature response Difference between predicted and actual temperature will detect this in early stage (slow drift) Page 26 November 2nd, 2018 Siemens PLM Software #### **Lessons learned** - Neural Networks can be used to estimate accurately gearbox performance KPIs - In the available SCADA database, the amount of gearbox related data was very limited - Vibration sensor data was not available - Only 3 temperature sensors were installed - The Neural Network need to be trained with "good" and "faulty" data - The Winergy gearboxes are too good! The amount of fault occurrences is statistically not significant. The added value depends of the amount & quality of the input data - Introduction - Input data - Remaining Useful Lifetime Model creation & validation Load accumulation Lifetime prediction - Early Failure Detection Neural Network - Conclusion ### **Conclusions** ### Remaining Useful Lifetime (RUL) - Proof of concept: It is possible to predict the Remaining Useful Lifetime (RUL)! - High quality input data is an absolute requirement - Complete and consistent SCADA data - Detailed information of the monitored component: Gearbox - Design, material & component details - Design rules Load assumptions - Knowledge of component suppliers - Turbine dynamic model - Info provided by turbine OEM OR - Reverse engineering based upon measurements and public domain data ### **Early failure detection** - Proof of concept: NN can be used to predict gearbox condition parameters - A large database of 'failures' is required to train the network Page 29 November 2nd, 2018 Siemens PLM Software