

Introduction

- Input data
- Remaining Useful Lifetime Model creation & validation Load accumulation Lifetime prediction
- **Early Failure Detection Neural Network**
- Conclusion

Introduction

Siemens PLM Software

Wind farm maintenance is exceptionally challenging

- Shorter lifetime than expected 20 years
- Critical issue: gearbox

Need for Predictability of the maintenance costs of each turbine

- Remaining Useful Lifetime (RUL) of each gearbox in the wind farm
- Early Failure Detection tool
 Maintanana and budget n
 - => Maintenance and budget planning

Reliable historical data

- Logged turbine controller data: SCADA (Supervisory Control and Data Acquisition)
- To be able to calculate the gearbox RUL based on only SCADA data is a huge advantage!

"Proof of Concept" collaboration project

Utility/wind farm operator, Siemens PLM and Winergy

Dual Technical approach

Neural Network (NN)

SCADA Monitoring data – 78 Wind Turbines
 72 channels (wind speed, rpm, gearbox temp, faults, ...)

Service history

Data stored over **4 years**

Data gathered and organized in **MindSphere**

SIEMENS Ingenuity for life

Turbine Model (SWT)

Training Neural Network

Failure prediction and detection

SCADA load cases

Digital Twin: Model creation and correlation

Remaining lifetime of gears and bearings for each wind turbine

Introduction

Input data

- Remaining Useful Lifetime
 Model creation & validation
 Load accumulation
 Lifetime prediction
- Early Failure Detection
 Neural Network
- Conclusion

SCADA Database

Description
Angle of blade 1
Angle of blade 2
Anlge of blade 3
Generator speed
Generator speed
Nacelle Angle
Operating state of the turbine
Generated power
Rotor speed
Gearbox temperature bearing 1
Gearbox temperature
Gearbox temperature bearing 2
Generator torque
Wind speed
Hydraulic brake pressure
Ambient temperature
Nacelle temperature
Tower acceleration

Repair history

SIEMENS
Ingenuity for life

Wind Farm Operator

Detailed gearbox information

Winergy

Dedicated measurements on 1 turbine

Siemens PLM

Unrestricted

Page 6 November 2nd, 2018

SCADA data

10 minute data points

- Average
- Minimum
- Maximum
- Standard deviation

Event & fault logging

- Braking
- Pitching
- Errors
- •

SCADA name	Description
AngleBlade1	Angle of blade 1
AngleBlade2	Angle of blade 2
AngleBlade3	Anlge of blade 3
SpeedGenCCU	Generator speed
SpeedGenPLC	Generator speed
AngleNacelle	Nacelle Angle
OperatingState	Operating state of the turbine
PowerGen	Generated power
SpeedRot	Rotor speed
TempGbxBrg1	Gearbox temperature bearing 1
TempGbx	Gearbox temperature
TempGbxBrg2	Gearbox temperature bearing 2
TorqueGen	Generator torque
SpeedWind	Wind speed
PrePressHssBrake	Hydraulic brake pressure
TempAmbient	Ambient temperature
TempNacelle	Nacelle temperature
TowerAccMag	Tower acceleration

Unrestricted © Siemens AG 2018

Page 7 November 2nd, 2018 Siemens PLM Software

SCADA - Creation of Wind time series

- Based upon SCADA 10-minute data samples: wind speed average, standard deviation minimum and maximum
- Classification in wind classes as function of <u>wind speed</u> and <u>turbulence</u>

Unrestricted © Siemens AG 2018

Page 8 November 2nd, 2018 Siemens PLM Software

SCADA - Brake events

- 8 brake types: depends of blade pitching, mechanical braking & magnetic braking contributions
- For all turbines during a 4 year period: Cumulative number of occurrences of each braking type

Unrestricted © Siemens AG 2018

Page 9

November 2

- Introduction
- Input data
- Remaining Useful Lifetime

Model creation & validation

Load accumulation Lifetime prediction

- Early Failure Detection
 Neural Network
- Conclusion

Wind turbine modelling

LMS Samcef for Wind Turbine (SWT) combined kinematic-dynamic model of the entire turbine

Detailed gearbox model information by Winergy

Reverse Engineering of turbine by measurements in 1 turbine

Driving force: Wind time series

Model includes

Blades and the Hub

Main shaft

Winergy gearbox

Speed Coupling shaft

Generator

Bedplate

Tower

Pitch controller

SIEMENS Ingenuity for life

Model validation measurements in 1 turbine

- Aim: Identification of the global turbine dynamics (resonances)
- Vibration response measurements by artificial excitation (hammer impact)
- Updating of SWT model (without wind!) based upon measurements

Simulated nacelle yawing mode

Measured nacelle yawing mode

Measurement locations (120 DOF)

- Hub
- Main shaft
- Gearbox
- Generator
- Bedplate
- Tower

Page 12 November 2nd, 2018 Siemens PLM

Response validation measurements: Semi steady-state wind excitation

Measurement SWT Modelling

November 2nd, 2018

Response validation measurements: Transient operation

Aim: Verification of gearbox loads during transients (e.g. stopping and starting, yawing, ...)

Operational response correlation

- Operational measurements on 1 turbine
- Update of the parameters (e.g. control settings, damping, rotational dynamics, ...) to fit the response

Operational Validated model

Torque at LSS during braking event

- Introduction
- Input data
- Remaining Useful Lifetime
 Model creation & validation

Load accumulation

Lifetime prediction

- Early Failure Detection
 Neural Network
- Conclusion

Load accumulation

Conversion of brake events to gearbox loads

- Loads measurements in 1 turbine
- Instrumented gearbox: RPM and torque
- Application of several braking events
 - Most frequently observed in SCADA logging
 - Most severe (E-Stop)

Load accumulation

SIEMENS Ingenuity for life

Loads cascading: from SCADA to bearing & gear teeth forces

Clearly defined operating conditions

Validated turbine model with detailed gearbox

Loads for all components for all operating conditions

- BRAKE_4_timeseries.csv
- BRAKE 8 timeseries.csv
- LMS_Occurences.xlsx
- LoadCase3_timeseries.csv
- LoadCase4_timeseries.csv
- LoadCase5_timeseries.csv
- LoadCase6_timeseries.csv
- LoadCase7_timeseries.csv
- LoadCase8 timeseries.csv
- LoadCase9_timeseries.csv
- LoadCase10_timeseries.csv
- LoadCase11 timeseries.csv
- LoadCase12 timeseries.csv
- LoadCase13_timeseries.csv
- LoadCase14 timeseries.csv
- LoadCase15 timeseries.csv
- LoadCase16 timeseries.csv
- _
- LoadCase17_timeseries.csv
- LoadCase18_timeseries.csv
- LoadCase19_timeseries.csv
- LoadCase20_timeseries.csv

Unrestricted © Siemens AG 2018

Page 17 November 2nd, 2018 Siemens PLM Software

- Introduction
- Input data
- Remaining Useful Lifetime
 Model creation & validation
 Load accumulation

Lifetime prediction

- Early Failure Detection
 Neural Network
- Conclusion

Lifetime prediction

SIEMENS Ingenuity for life

Remaining Lifetime Process

Lifetime prediction

Unrestricted © Siemens AG 2018

Siemens PLM Software November 2nd, 2018 Page 20

- Introduction
- Input data
- Remaining Useful Lifetime
 Model creation & validation
 Load accumulation
 Lifetime prediction
- Early Failure Detection

Neural Network

Conclusion

Recurrent Neural Network

Machine Learning is a type of Artificial Intelligence that provides computers with the ability to learn without being explicitly programmed.

Siemens PLM Software November 2nd, 2018 Page 22

SIEMENS Ingenuity for life

Service history

Only a small amount of gearbox failures is observed

- 6 turbines were repaired in the available data timeframe
- Repairs are linked to gear and bearing damages (cracks)

Turbine	Date	What	Remark
	19/8/2015	Notice	Broken tooth on the intermediate pinion found
Α	24/8/2015	Repair	Intermediate speed shaft
	26/8/2015	Repair	Intermediate assembly + three bearing replacement
В	1/4/2015	Repair	Intermediate speed shaft
	13/4/2015	Notice	Broken teeth on the intermediate gear found
	30/07/2015	Notice	Gen allingment, all OK
С	1/5/2017	Repair	Intermediate speed shaft
	3/19/2017	Notice	Cracks in IMS gen side bearing + planetary gears damages
D	1/4/2015	Repair	Intermediate speed shaft
	8/4/2015	Notice	Broken tooth on the intermediate gear
E	4/14/2015	Notice	Cracks in bearings generator side and spalling on the planetary bearings
	18/05/2015	Repair	Intermediate speed shaft
	29/09/2017	Notice	All OK
F	13/10/2014	Repair	Intermediate speed shaft

SCADA signals representative for potential gearbox damage

Available SCADA signals

SCADA name	Description
AngleBlade1	Angle of blade 1
AngleBlade2	Angle of blade 2
AngleBlade3	Anlge of blade 3
SpeedGenCCU	Generator speed
SpeedGenPLC	Generator speed
AngleNacelle	Nacelle Angle
OperatingState	Operating state of the turbine
PowerGen	Generated power
SpeedRot	Rotor speed
TempGbxBrg1	Gearbox temperature bearing 1
TempGbx	Gearbox temperature
TempGbxBrg2	Gearbox temperature bearing 2
TorqueGen	Generator torque
SpeedWind	Wind speed
PrePressHssBrake	Hydraulic brake pressure
TempAmbient	Ambient temperature
TempNacelle	Nacelle temperature
TowerAccMag	Tower acceleration

Typical (bearing) monitoring signals (e.g. vibration) are not available!

Assumption: Gearbox temperatures are most likely to be influenced by gearbox bearing failures:

- TempGbxBrg1
- TempGbx
- TempGbxBrg2

Gearbox temperature prediction

Page 25

SIEMENS

1. Create a Neural Network that can predict gearbox temperatures from inputs that are not influenced by failures

- 2. Train the neural network with data when no failure is present
 - The networks learns how a healthy turbine reacts
- 3. Feed the complete dataset to the network
 - Prediction of gearbox temperature is an indicator for failure
 - Accurate = Healthy state
 - Drifts and inaccuracies = Non-healthy state

Accurate Temperature prediction

Failure in cooling system would change temperature response

Difference between predicted and actual temperature will detect this in early stage (slow drift)

Page 26 November 2nd, 2018 Siemens PLM Software

Lessons learned

- Neural Networks can be used to estimate accurately gearbox performance KPIs
- In the available SCADA database, the amount of gearbox related data was very limited
 - Vibration sensor data was not available
 - Only 3 temperature sensors were installed
- The Neural Network need to be trained with "good" and "faulty" data
 - The Winergy gearboxes are too good! The amount of fault occurrences is statistically not significant.

The added value depends of the amount & quality of the input data

- Introduction
- Input data
- Remaining Useful Lifetime
 Model creation & validation
 Load accumulation
 Lifetime prediction
- Early Failure Detection
 Neural Network
- Conclusion

Conclusions

Remaining Useful Lifetime (RUL)

- Proof of concept: It is possible to predict the Remaining Useful Lifetime (RUL)!
- High quality input data is an absolute requirement
 - Complete and consistent SCADA data
 - Detailed information of the monitored component: Gearbox
 - Design, material & component details
 - Design rules Load assumptions
 - Knowledge of component suppliers
 - Turbine dynamic model
 - Info provided by turbine OEM OR
 - Reverse engineering based upon measurements and public domain data

Early failure detection

- Proof of concept: NN can be used to predict gearbox condition parameters
- A large database of 'failures' is required to train the network

Page 29 November 2nd, 2018 Siemens PLM Software