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Introduction

SIEMENS
lngemuity for life

Wind farm maintenance is exceptionally challenging

+ Shorter lifetime than expected 20 years
+ Critical issue: gearbox

Need for Predictability of the maintenance costs of each turbine
+ Remaining Useful Lifetime (RUL) of each gearbox in the wind farm

- Early Failure Detection tool
=> Maintenance and budget planning

Reliable historical data

* Logged turbine controller data: SCADA (Supervisory Control and Data Acquisition)
« To be able to calculate the gearbox RUL based on only SCADA data is a huge advantage!

“Proof of Concept” collaboration project

- Utility/wind farm operator, Siemens PLM and Winergy
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Dual Technical approach

==

-

\_

|

Data gathered and organized in MindSphere
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Input data SIEMENS
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SCADA Database Repair history

SCADA name Description Picture 2
AngleBladel Angle of blade 1

AngleBlade2 Angle of blade 2

AngleBlade3 Anlge of blade 3

SpeedGenCCU Generator speed

SpeedGenPLC Generator speed

AngleNacelle Nacelle Angle

OperatingState Operating state of the turbine
PowerGen Generated power

SpeedRot Rotor speed

TempGbxBrgl Gearbox temperature bearing 1
TempGbx Gearbox temperature
TempGbxBrg2 Gearbox temperature bearing 2
TorqueGen Generator torque

SpeedWind Wind speed

PrePressHssBrake |Hydraulic brake pressure
TempAmbient Ambient temperature
TempNacelle Nacelle temperature
TowerAccMag Tower acceleration

Dedicated measurements
on 1 turbine

Detailed gearbox
information
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Input data

SCADA data

10 minute data points
* Average
*  Minimum
Maximum
« Standard deviation
Event & fault logging

U Braking SCADA name Description
A A AngleBladel Angle of blade 1
[}

PItChIng AngleBlade2 Angle of blade 2
 FErrors AngleBlade3 Anlge of blade 3
° SpeedGenCCU Generator speed

SpeedGenPLC Generator speed

AngleNacelle

Nacelle Angle

OperatingState

Operating state of the turbine

PowerGen Generated power

SpeedRot Rotor speed

TempGbxBrgl Gearbox temperature bearing 1
TempGbx Gearbox temperature
TempGbxBrg2 Gearbox temperature bearing 2
TorqueGen Generator torque

SpeedWind Wind speed

PrePressHssBrake |Hydraulic brake pressure

TempAmbient

Ambient temperature

TempNacelle

Nacelle temperature
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TowerAccMag

Tower acceleration
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SpeedGen vs. PowerGen
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edWindMean vs. PowerGen , Pn = 1590 [kW]
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Input data SIEMENS
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SCADA - Creation of Wind time series

« Based upon SCADA 10-minute data samples: wind speed average, standard deviation minimum and maximum

* Classification in wind classes as function of wind speed and turbulence

Simulated wind times series 6m/s wind speed histogram (low turbulence)
30 =
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Input data SIEMENS
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SCADA - Brake events

» 8 brake types: depends of blade pitching, mechanical braking & magnetic braking contributions

For all turbines during a 4 year period: Cumulative number of occurrences of each braking type
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Model creation SIEMENS
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Wind turbine modelling

*  LMS Samcef for Wind Turbine (SWT) combined kinematic-dynamic model of the entire turbine

+ Detailed gearbox model information by Winergy

* Reverse Engineering of turbine by measurements in 1 turbine fmmem i —Jim %ﬁn?wmd

* Driving force: Wind time series

i
.
i

Control

2
\\\‘\\:ﬁ» E‘ gq

Wind turbine modelling with FE
and multi-body assembly
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Model creation SIEMENS
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Model validation measurements in 1 turbine

- Aim: Identification of the global turbine dynamics (resonances)
« Vibration response measurements by artificial excitation (hammer impact)

« Updating of SWT model (without wind!) based upon measurements

Simulated nacelle yawing mode Measured nacelle yawing mode Measurement
locations (120 DOF)

* Hub

© Main shaft

- Gearbox

- Generator

- Bedplate

Tower

Wode 1 :4 86067 Hz, 0.26 %
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Model creation SIEMENS
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Response validation measurements: Semi steady-state wind excitation

O _ )
Model input
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Model creation SIEMENS
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Response validation measurements: Transient operation

- Aim: Verification of gearbox loads during transients (e.g. stopping and starting, yawing, ...)

: : ) Torque at LSS during braking event
Operational response correlation
17,500 1
« Operational measurements on 1 turbine i =L
12,500 I | TEST

* Update of the parameters (e.g. control settings, I !
damping, rotational dynamics, ...) to fit the response 10.000 el

7.500

5,000

[N*m] [N]

> Operational Validated model

2,500

-2,500 1

-5,000

-7.500
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Load accumulation

Conversion of brake events to gearbox loads

 Loads measurements in 1 turbine

* Instrumented gearbox: RPM and torque

SIEMENS
lngemuity for life

Gearbox loads during braking event
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Load accumulation SIEMENS
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Loads cascading: from SCADA to bearing & gear teeth forces

Validated turbine model
with detailed gearbox

'l\ | BRAKE_4 timeseries.cowv
\ \ { BRAKE_& timeseries.csv
l . ! LMS_Occurences.xlsx

[ Yo bt LoadCase3_timeseries.csv

=T LoadCased_timeseries.csv

. | 2 -, - LoadCasze5_timeseries.csv

% = LoadCasef_timeseries.csv

LAY - LoadCase7_timeseries.csv

: T LoadCased_timeseries.csv

g _ LoadCased_timeseries.csv
_ LoadCasell_timeseries.csv
LoadCasell_timeseries.csv
LoadCasel2_timeseries.csv
LoadCasel3_timeseries.csv
LoadCaseld_timeseries.csv
LoadCasel3_timeseries.csv
LoadCasel&_timeseries.csv
LoadCasel7_timeseries.csv
LoadCaseld_timeseries.csv
LoadCasel9_timeseries.csv
LoadCase20_timeseries.csv
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Lifetime prediction SIEMENS
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Remaining Lifetime Process
Load cases from SCADA

' .| Correlated Digital Twin |
- _ _ _ Correlated SWT model loaded with
Digital Twin: Samcef for Wind Turbine turbulent wind and brake activation
l Correlation with TEST l
Experimental Operational Load for each bearing and gear pair
Modal Analysis Measurements v

bibid

L
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| i V(Wl,ﬂ}zvf' |

=00
000
o

Accumulated damage

. Emergency stops in each component for
creating high torques in shafts each wind turbine
* Normal operation, low and
high wind speeds l

* Blade pitchi .. ; ;
I e Remaining Useful Lifetime for

each wind turbine at component level
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Lifetime prediction

Loads

Individual load spectrum derived from
individual load case occurances

Digital Twin

SIEMENS
lngemuity for life

Load capacity

Material data, manufacturing data, design information, field data, supplier
information

The “DigitalTwin” is an developed algorithm which collects and prepares the whole input
data. The model is created individually for each gearbox and contains the connection
between load and load capacity.

Output = f(Duration, Torque, Speed, Temperatur,...)

Generals

~

Bearings Remaining Useful Life (RUL)

1 [ | 1  *O0 = New component
o 1= Lifetime reached
0 (theoretical failure)
r\
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Early Failure Detection: Neural Network

Recurrent Neural Network

[ Machine Learning is a type of Artificial Intelligence that provides
. computers with the ability to learn without being explicitly
programmed.

|! Machine Learning

Labeled Data Algorithm

Training

Prediction

Learned Model Prediction

Provides various techniques that can learn from and make predictions on data
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ARTIFICIAL
INTELLIGENCE

MACHINE
LEARNING

DEEP

S < LEARNING

A<

Sl Supervised learning

1950's 1960's 1970's 2000's

Standard Neural

[1SLlWOIK

Recurrent Neural Convolutional
NeTtWOrK Ne 3 g K

Output

Hidden

Time step 2

For time series inputs For n-dimensional data
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Early Failure Detection: Neural Network

Service history

Only a small amount of gearbox failures is observed
* 6 turbines were repaired in the available data timeframe
- Repairs are linked to gear and bearing damages (cracks)

Si

EMENS
lngemuity for life

Turbine |Date What Remark
19/8/2015 |Notice |Broken tooth on the intermediate pinion found
A 24/8/2015 ([Repair |Intermediate speed shaft
26/8/2015 [Repair |Intermediate assembly + three bearing replacement
B 1/4/2015|Repair |Intermediate speed shaft
13/4/2015 |Notice |Broken teeth on the intermediate gear found
30/07/2015 [Notice |Gen allingment, all OK
C 1/5/2017|Repair |Intermediate speed shaft
3/19/2017|Notice |Cracks in IMS gen side bearing + planetary gears damages
D 1/4/2015|Repair |Intermediate speed shaft
8/4/2015(Notice |Broken tooth on the intermediate gear
4/14/2015|Notice |Cracks in bearings generator side and spalling on the planetary bearings
E 18/05/2015 |Repair |Intermediate speed shaft
29/09/2017 [Notice [All OK
F 13/10/2014 |Repair |Intermediate speed shaft
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Early Failure Detection: Neural Network

Available SCADA signals

SCADA name Description

AngleBladel Angle of blade 1
AngleBlade2 Angle of blade 2
AngleBlade3 Anlge of blade 3
SpeedGenCCU Generator speed
SpeedGenPLC Generator speed

AngleNacelle

Nacelle Angle

OperatingState

Operating state of the turbine

PowerGen Generated power

SpeedRot Rotor speed

TempGbxBrgl Gearbox temperature bearing 1
TempGbx Gearbox temperature
TempGbxBrg2 Gearbox temperature bearing 2
TorqueGen Generator torque

SpeedWind Wind speed

PrePressHssBrake [Hydraulic brake pressure

TempAmbient

Ambient temperature

TempNacelle

Nacelle temperature

TowerAccMag

Tower acceleration

SIEMENS
lngemuity for life

Typical (bearing) monitoring signals (e.g.
vibration) are not available !

( )
Assumption: Gearbox temperatures are

most likely to be influenced by gearbox
bearing failures:

 TempGbxBrgl

 TempGbx

 TempGbxBrg2
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Early Failure Detection: Neural Network

Gearbox temperature prediction

Inputs

Recurrent Neural Network - RNN

Generator Power

Ambient Temperature

Rotation Speed

Generator Torque

Wind Speed

Considered failures will not
affect these input channels

&

RN,

Unrestricted © Siemens AG 2018
Page 25 November 2nd, 2018

SIEMENS
lngemuity for life

Output

Gearbox Temperature

Most likely channel to
observe the considered
failures

GRU element: adds a recurrent element to the
network = memory capability, possibility to

influence the next result with the previous result
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Early Failure Detection: Neural Network

Create a Neural Network that can predict
gearbox temperatures from inputs that are
not influenced by failures

InpUt B NN By TGearbox

Train the neural network with data when
no failure is present

The networks learns how a healthy turbine
reacts

Feed the complete dataset to the network
Prediction of gearbox temperature is an
indicator for failure
Accurate = Healthy state
Drifts and inaccuracies = Non-healthy state

Prediction 2 Measurement

Input "[ NN ]"Tgearbox > TGearbox
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Temperature (degree)

SIEMENS

Gearbox temperature

80
—— QOriginal Data

Predicted
75
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Date

|:> Accurate Temperature prediction

: Failure in cooling system would
change temperature response

Difference between predicted and actual
temperature will detect this in early stage
(slow drift)
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Early Failure Detection: Neural Network SIEMENS
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Neural Networks can be used to estimate accurately gearbox performance KPIs

In the available SCADA database, the amount of gearbox related data was very limited
Vibration sensor data was not available
Only 3 temperature sensors were installed

The Neural Network need to be trained with “good” and “faulty” data
The Winergy gearboxes are too good! The amount of fault occurrences is statistically not significant.

4 )
~ The NN technology works

—— The added value depends of the amount & quality of the input data
& J
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Conclusions SIEMENS
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/Remaining Useful Lifetime (RUL)

* Proof of concept: It is possible to predict the Remaining Useful Lifetime (RUL)!

- High quality input data is an absolute requirement

- Complete and consistent SCADA data

- Detailed information of the monitored component: Gearbox
= Design, material & component details
~ Design rules — Load assumptions
~  Knowledge of component suppliers

* Turbine dynamic model
* Info provided by turbine OEM

OR
\ © Reverse engineering based upon measurements and public domain d

N

2/
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